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1.0 INTRODUCTION

One of the prime difficulties of satellite data
reduction lies in the computer time required to obtain
the partial derivatives for estimating orbital para-
meters. If the problem is formulated in classical

rectangular coordinates x, y, z, X, }, z, one is obliged
to generate the 36 partial derivatives
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For perturbed artificial satellite motion, these partials
cannot be obtained in closed analytic form. If they could

be written in closed form, then one could write

x = f(xo, Yor %o xo; 90, Zo t - t)




(or a slight modification thereof if the chain rule is

to be invoked) which would imply the artificial satellite
problem was solved in closed analytic form. This

éppears to be impossible.

We are therefore restricted to computing the
partials by numerical means. One approach is to hold
five of the six parameters constant, vary the sixth, and
numerically integrate to obtain the various rates of
change. This method is very time consuming, but in some
cases is the only possible way to obtain the desired
result. ‘ |

In the following sections, we describe a numeri-
cal integration method which gives the required partial

derivatives as a by-product of the integration scheme.




2.0 THE POWER SERIES METHOD

One of the simplest means of numerical integra-
tion is doubtlessly that of Runge and Kutta. The proce-
dure is adequate in most cases; but exhibits certain
limitations oa accuracy. For example, a 4th order
Runge-Kutta scheme has an inherent error of the order
of the 5th power of the step size. One may, of course,
reduce the step size to increase accuracy, but this
eventually leads to a trade-off with round-off error.

To increase the accuracy beyond the minimum error
obtained by determining an optimum trade-off between
truncation and round-off, one must go to a whole new
set of integration equations; for example, a 5th order
Runge-Kutta schemne. '

In this section, we will describe a numerical
integration procedure in which only one input parameter
must be changed in order to obtain a higher degree of
accuracy.

2.1 General Concepts

Consider, for example, the differential equation

x = £(x) (1)

The method proposed here is called the '"Power Series
Solution." The basic idea is to assume a solution for

equation (1) of the form

n
_ 2 n _ i
X = X o+ X At + XAt + L. x At —-.Z% x;0t7 (2)
1:




and determihe, via recurrent formulae the unknown coeffi-
cients Xys Xg5 een X Equation (1) will yield one
constant of integration, which we take as the initial
condition, X

Having all the coefficients of equation (2) we
have then obtained a relation which represents the value
of x within some interval of time, At.

We note that X, is the position of the system
when At = 0, and, by taking the time derivative of (2),
that Xy is the velocity at time At = 0.

The overall objective is then,; having assumed

some initial .condition, say x to obtain a recurrent

O’
relationship of the form

X;4q = g(xi, X5 1s e Xgs i,) iz0

so that we may compute, to any practical degree of accu-
racy, the value of x within some interval At. After
choosing this particular At, a new value of x may be
obtained by performing the £ of equation (2) and taking
this to be a new X- We then continue this process step

"by step until some value teiNAL 1S reached.

The advantage of this process over that of the
Runge-Kutta method is that if the assumed series con-
verges, a higher order of accuracy may be obtained by
simply computing more coefficients via the recurrence
formula. There is no need to change the basic form of

the integration scheme.




2.2 Example

Consider the equation

X =x+5 ' (3)

We assume

n -
- i

x= > x; At (4)

i=0
so that

n-1 .

* . 1

X = ;BO (i+1) Xipq At
i=0 .

Substituting these last two equations into (3) yields,

n-1 ‘ i n i

> (i+1) x5, 0t7 = 2 Xy AtT)+S

i:o i=0

or

n_l : - n'l .
. i _ i n
(i+1) Xj,q BT = > x; A7)+ x At 405

1=0 i=0




: A
ety . :

so that if we equate equal powers of att (i =0, 1, 2,

... n - 1) one obtains

b = x_+ 5 - i1i=0 (5)

1 o

}(i . .
X. = 1 <i<n (6)
1+l i+ 1 -

Once a value of X, has been selected, the value of Xq
may be computed from (5) and all succeeding coefficients

(xz, Xgy oue xn-l) may be computed from (6).

2.3 Confergence

We now address ourselves to the question of the

convergence of the series solution (4).

If we let
n ;
Sn = Z Xy At
-i=0
we recall that if
S = Limit Sn

n->c

exists, the series is said to converge to the value S.




The following theorems will be used to answer
the question of convergence.

THEOREM I

The geometric series

i

2: a A (a = const)

i=0

converges for |A] < 1.

THEOREM 11

If

it i
5 Ixgl 1]

1=0

converges, then

had i
.23 X4 A

i=0

also converges.



In order to prove the convergence of the series
(4), we introduce € and X as arbitrary, positive, finite

numbers. We wish to show that the inequality
Ix;| <X ¢ | | (7)

implies the validity of the inequality

1%

| A
o1 !
o

i+l (8)

‘That is, we will show that all values of |xi| (i=1, 2,

3, cv. ) are bounded provided X is finite. Theorems I
and II then will be invoked to prove the convergence of
the series (4).

To start the proof of convergence, we write
(6) as

Substituting equation (7) into the above results in

X€E

- (9)
%501 i+1




Substitution of (8) for the left-hand side of (9) results
in either

- - i
§51+1 < X€ (10)
i+l
or
. — i _
)_(.€1+1 < Xe ‘ (11)
i+l
For the sake of clarity in that which follows, we rewrite
(9), (10), and (11) as
|x5,11 < A (12)
xel*l <A (13)
xel™h >4 (14)

Equations (12) and (13) yield no significant information
concerning a relationship between |xi+1] and xe'*1,  How-

ever, (12) and (14) demand that

- 1+1
|xi+1I < Xe'




so that a sufficient condition that (8) holds true is
(14), and therefore,

. — i
— 1+1 XE
X€ >

i+l

which we write as

Since it was assumed that X and € were positive and non-
zero, we must have

But, for any i » 1,

(i>1)

| A
N |

which puts a lower bound on &, i.e., we shall take




F

We have now proved that all X, are bounded provided

m
v
]

If we define x* as the infinite series of absolute values
of the solution series (4), then

x* = |x0| o xg ] Aat] o+ ... x| |at™] o+

1l n
(15)

-y Il lselt
i=0 :

Theorem II states, however, that if (15) can be shown to

be convergent, then

x =y, Xy Ati
i=0

is also convergent. Thus, the burden of the proof 1lies
in showing that (15) is convergent. To this end, we
substitute (7) into (15) to obtain

o0 . .
x* < )] x e* |at]?t
i=0




which, by'Theorem I is convergent in the disk

lat] < <

We have now proved convergence for the series

(<] -
X = 2: X5 At

i=0
“provided ‘
lat] < 1
and
> 1
2.4 Practical Applications

The biggest asset of the power series solution
lies in the practical application of the method. That
is, one need not waste time on useless accuracy. For
example, assuming the series converges and the input
data is accurate to some B8, we now choose some value of

1" 1" 3 >
n" in equation (6) and compute Xys Xgp een Xpoq-
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Experience has shown that 2: x. At is practically
. . j=i+l
always < xiAtl, and therefore, the stepsize may be

computed fromn,

n-1
|x ;] At

I}
w

or

at = |—B | 1l (16)

x|

Computing the integration step in this manner guarantees
a certain degree of accuracy (assuming round-off doesn't
become uncontrolled due to very long integration times),
and at the same time minimizes the computer time for
some prescribed number of coefficients. Of course, a
different value of "n" may also decrease the time
required.

The process of interpolation also has advantages
over many of the other methods. 1In the power series
approach, the interpolating polynomial is already avail-

0 .
able (x =), X5 At') and one need only to substitute
i=0
some value of At to obtain x at any time, say At*, where

-At < At® < At. The results will be at least as accu-

rate as the case where the step size is At.




v

Inverse interpolation is also obtained by simply
inverting the polynomial to yield a value of At* for some
given x. Since the polynomial can be inverted by itera-
tive methods, the results can be-at least as accurate as
the integration itself,




3.0 EVALUATION OF PARTIAL DERIVATIVES

We now address ourselves to the problem of
obtaining expressions for the partial derivatives given
in section 1.0.

Many programs simply choose small increments
in the orbital parameters (Ax, Ay, Az, A&, A&, A}), add
these increments to the original parameters (one at a

time) and numerically integrate to obtain, for example

+ L] . . _ L 4 L
Xy X (X X,y 32 X Y 0520 X (XY 5205 X Y o5 2g)

on ) AX

This procedure is very time consuming on a computer, and
should be discarded if possible.

In the next section we describe a procedure for

computing partial derivatives which is primarily a by-

product of the integration scheme just discussed.

3.1 General Concepts

We start by considering the simple example of

section 2.2. The assumed series solution was (equation 2)

X =X_+ X

At + x., At2 + x_ Ath
o 1

2 cee Xp




Equations (5) and (6) show that we may write this last
equation as

n

- 2
X = x ¥ xl(xo)At + xz(xo)At + ... xn(xo)At (17)
so that
3x 3% (x,) 30X, (x45) —
—_— = 1 + _———1—-——0-—At + __g__Q_Atz memeeae- (18)
38X 8Xx X
0 0 )
This last equation represents ax/axo anywhere in the
domain of convergence for At. All that is required is
to compute the partials axl/axo, axz/axo, --- an/axo,
which are constants in the domain for At. From equations
(5) and (6)
X
1 -5 : (19)
9X '
o
9X. 1 9X.
+ 1 _ : i (20)
on i+ 1 on




The coefficients Bxi/axo (i =1, 2, --- n) may
be computed by (19) and (20) and hence, we now have only
to choose a 4t and perform the summation of equation (18)
to obtain Bx/axo at any tine in the domain of convergence
for At. Notice that it is not necessary to reevaluate
the partial ox./ox (i = 1, 2, --- n) for every different
time in the interval At,

The advantages of this method become appareﬁt
with a little examination of the physical interpretation
of (18) For short arc orbit determination (15-20 minutes)
it appears that if we assume a reasonable upper limit on
the number of coefficients X (say n < 30}, then only

one evaluation of the various coefficient axi/axo

(i = 1, 30) is required. The partials at any time in
the domain of convergence may then be computed by simply
assigning the required value to At and summing as shown
in (18). This appears to be many times faster than
other techniques used to get the required partial

derivatives.

3.2 Convergence

The proof of convergence for (18) is identical
to that given for (2). Only the high-lights will be
given here. Again, let eand X be arbitrary, positive,

finite numbers. We wish to show that the inequality

< Xe ' (21)




implies the validity of the inequality

< Xt (22)

for i > 1. From 20

xt._ (23)

Substituting (22) into (23) gives the sufficdient
condition

— 1+1 Xe
€

(24)

From this point on the proof is identical to
that given in section 2.3, and will not be duplicated.
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4.0 APPLICATION TO THE TWO-BODY ARTIFICIAL SATEL-
LITE PROBLEM

The following four sections are devoted to the

analytical development of the recursive relations for

the two-body problem. While such an application may
appear to be a waste of time, this intermediate study
will yield a feel of the method; its viftues, its pit-
falls. It is also desirable to apply a new and untried
method to a problem with a known closed form solution,
since this aids in technical evaluation and accuracy

checks.

- The primary concern in these sections is to

‘determine how fast the coefficients converge for the

assumed serits solution and the series for the partial

derivatives.

~

4.1 The Integration Formulae

The equations of motion for the two body problem

can be put in the form

X = -%5 (25a)
T

y o= 5 (25b)
T

Z = .—_%.E. (ZSC)
T




>

where
r2 - XZ + y2 . z2
p = constant
Define
1
A, = —
1 r3
or
3 _
Alr =1

Equations (25) and (26) can now be written in the

following form:

TY = XX + yy + zz

(25d)

(26)

(27a)



1 1
X = -pAx
y = -udy
Z = -ypAz

Assume the solutions

m

X = Z x1
i=0
m

y = %y,
i=0 1!
m

z = I zl
i=0
m

r = I rl
i=0
m

A1= iEO a1,1

At

At

At

(27b)

(27c¢)

(27d)

(27¢)

(28a)

(28b)

(28c)

(284d)

(28e)




»

From these we obtain, to the

and therefore

i

i

i

i

[ e =

no~ s "N~

nm~g

0

0

0

(i+1) X

(i+1) Yie1 At

(i+1) 2541

(i+1) Tl At

(i+1) a At

1,i+1

. . i
(1+1) (i+2) X0 At

(i+1) (i+2) y;,, At

(i+1) (i+2) z,,, att

same powers of At,

(29a)

(29b)

(29¢c)

(294)

(29e)

(30a)

(30b)

(30c)




We now wish to obtain recurrent formulae for

the unknown coefficients Xi5 ¥y 23 0 Ty and a; ;- Note
3

i
that the equations to be solved are second order, and
hence six constants of integration are at our disposal.
Choose these six constants to be Xgs Yo Zg» X35 Vi and
Zq (which correspond to the position and velocity at

time At = 0).

In order to obtain the recurrence formulae, we

utilize the following general formulae:

m i m m n
$  p. At z q At") = % I p. q_.|At
i=0 ! n=0 o n=0 \i=o * ™74 .
) (31a)
m m-v
m+v
Toh | ik Pivv mesf O
il m n
I (i+1) py,q bt I oq, ath)=
i=0 n=0
m n n
nEO iEO (i+1) Pi¢1 9.3 At (31b)
m m-v . m+v
' vzl iEO ) Pieyer Opegf A

Consider equation (27a)

IT = XX + yy + 22

J A




From (31b)

+ : . .
where [ ] at™rV represents some quantity times At™ .
1
Similar expressions exist for xx, yy, and zz. Substitu-

tion of these results into equation (27a) gives

TR
II.MS

R S [] s -
0 1

II.MS

. n m+v
(i+1) X541 Xp-3 Aty + [ ]2 At

(1+1) Y59 Yp.)0t | [] s
3

+
17: 1
n~ms
[an]
I )—l. .
Hh s
o

) n m+v
(i+1) z.,q z _s)ot |+ [ ]4 At

+
= ’
{1 e =]

o
N
o
oo
o




which we write as

[ s =

Since we have assumed only '"m" terms in the series solu-

tion, alllcoéfficients of At™" can be assumed to be
""zero." Equating then, coefficients of Atn, we obtain
n i
z (i+1) r. T . =
i=0 ' i+1 "n-1
n
I, 4y [Xi+1 *n-1i * Yid1l Yn-i T %iea Zn—i]



or

"which we write as

(n+1) 1y rp,g = (1) (X4 X0 * Ypu1 Yo * Zpe1 20)

n-1
tLL, O (g Xpg Y Ve Vi (322)
Zi+1 Zn-i ~ Ti+1 Tn-i)




K

which is the desired recurrence formula for the r,. In

an identical manner, one obtains the following recurrence

formulae for equations (27b), (27c), (27d) and (27e):

(n+1) Ty al,n+1 = -3(n+1) T4l al,O
n-1
) ifo (1+1) (37,7 27 n-3 * 31 ,5+41 Tn
n
(n+1) (n+2) X 40 = "M EO al’1 X3

n
(n+1) (n+2) Ynez = 7H -§ ?1,i Yn-i
A i=0 ’
n
(n+1) (n+2) Zp+2 © M -§ a1,1 Zn-i
i=0
4.2 The Partial Derivative Formulae

The required partial derivatives were given in
section 1.0, and the method of obtaining them follows

the ideas laid down in section 3.1.

1) (320)

t32c)

(32d)

(32¢)
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Recalling that Xy Yg» and zo represent the
position at time At = 0 and Xys ¥q> and z4 the velocity

at time At = 0, we write

oo oL Mo o %0 1
BxO _ axl ayo Byl 820 azl
In the interest of compacfness, we put this last result
in the following form:
ax* 1 x* = x .z X z (33a)
X ® 0’ Yo» Zo» *12 Y10 %1
Also, since the position and velocity components at time
At = 0 are independent of each other, we have
* x* = Xos yO’ ZO’ Xl’ yl’ Zl
X ) x* # x%%
*% = ’
x *0» Yo %o0 *10 Y10 %1
(33b)

Let us now define coefficients of At™ to be of
the mth order. The partials of '"zero" order in addition
to those of equations (33) are

aro . aal’o

* =
- ’ - X XO’ YO’ ZO’ xl’ yl’ Zl
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The partials of T, can be obtained from

which gives

x*
— x* Xns Yns 2
Bro T ~ 0 0 0
—_— = 0
ox* .
0 x* = X35 Y1s 23
For al,O
a = 1
1,0 3
T
0
which yields
) 3a1,0 aro "
93y o _ rg ax*
ox*
0 x*

(34)

Xp2 Yp» %o
(35)
X19 Y10 23

This completes all zero ordered partials.

FIRST ORDER PARTIALS




»

Equations (33) give some of the first order partials.

The remaining are

arl . Bal’l

ax* ax*

XO, YO’ ZO’ xl’ y1’ Zl

Setting n = 0 in (32a) gives

ToTy © XX * Yi¥p * Z21%
or
arl _ 1 axo Bxl 3
—_ = — X; — ¢ X, oy, —
ax* r, ox* ox*® ox*
Yy : 3z 9z or
N e S
ox* ox* ax* ox*
(36)
X* _

Xoo» Yoo Zp0 X310 Y1024

It is obvious that several of the terms of (36) are zero
for a given x*. However, in the interest of unifermity-

and simplicity of programming, we leave this last equation




b

in its present form so that one "DO" loop can be developed
for all partials defined by (36). This trend will be
carried on throughout the analysis.

Setting n = 0 in (32b) gives

To21,1 = " 3T3 g
or
Bal’l _ 1 aal’o arl
i B A1 YAy o0 T,
ax*® r, ax* ’ ox*
, (37)
T
v a 0
1,1 5

Equations (36) and (37) define all remaining
first order partials.

nt ORDER PARTIALS

All higher order partials may be computed by
taking the partials of the recursive equations (32a) -
(32e). In all cases, x* is to be replaced with x

Zgs X715 Yo and zq-

0, YO’




I3

For (32a)
aT 90X
- (n+1) Ty n+l (n+t1) | x ‘1 0
ox* \ n X
N ay'
0 ‘ n+1l
y — + ¥ +
Bl g 0 oxx
. 5 azn+l . BrO
0 5xx Dl axs
nz—:1 9X n-i
+ (i+1) { x. — o+
i=0 1+l Hxx
. Vn-i ; i+l
g oL ax#
9Z_ . 9Z.
+ z.+1 n-i ., ] 1+1
i ax* n-i oo
°Th-i 97441
T Tia o Tp-i
ax® ox*®

axn+1

ax*

3z

ax*®

axi+1

ax*

(38)



-

For (32b)

For (32c)

981 141

(n+1) T

f
t
~
=3
+
-
~

| Jda
1,0
3 (Ih+1 LS B

1=0

. n-1

or

+ 2 i+l
1,n'1 SX*
-4
ot,ia S Y Tned
3x* (n+1) (n+2)  i=0 \ 1ot

3rn+1)
ox*

0. .

981 341

ox

X .
n-i

ox*®

(40)
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For (32d)

For (32e¢)

ayn+2v

ax*

azn+2

ax*

-

(n+1) (n+2)

Yn-i

-H

(n+1) (n+2)

)

i=0

n

1=0

(""1,1

(al,i

ayn-i
ox*
(41)
9z .
n-i
ox*®
(42)



4.3 Convergence

In this section we wish to prove convergence

.for the assumed series provided Xgs Yg» 2g» X1s Yy %3

are bounded and T # 0. We start with the series for the

integration scheme.

Define X, y, z, T, a, and ¢ as arbitrary positive
finite numbers. Furthermore, define for all n > 2

) | v .
k = _— 43
n n{n+1) _( ~)

To prove convergence, we want to show that for any

n > 2, that the inequalities

I‘xnl < X k, € (442)
[ypl = F K & | (44D)
|z | < 2 gn e® -(44c)
| r, | < T Kk el . (444)
lay o1 < & Kk, & (44e)




’

imply the validity of

| %, | < Xk, €™ (45a)
| Yooy | & 7 kyp ™0 (45b)
|z | < Tk, "2 (45c)
| Thel | < T kn+1 €n+1 €45d)
lal.,n+1| < &k, el (45e)

~
«

That is, we wish to show that all Xps Ypo Zps Tpos and a

are bounded provided the initial conditions are finite

n

and T, # 0. The theorems of section 2.3 may then be
invoked to complete the proof of convergence.

We start with equation (32a), which we write as

(n+1) r < (n+1) 1 |x

0 II‘n+1|

+

Tl Dol + lzgal Izl

(cont. next page)




n-1

CF Mgl v gl

n-1
+ (iz + yz + 72 s ?2) SOS D)

which we write in abbreviated form as

(n+1) 1, |rn+1| < P

B [l Tl ¢ b
* Izi+1l Izn—i‘ * Iri+1| Irn-i|$
Substituting (44) into this last result gives
+1) —
(n+1) 1, lrn+1| < (n+1) kn+1v€n- g X |x0[

!Yn_il

(i+1) kn_. k

(46a)

i+l



’

. a relationship between T 417 kn+1’ and €

Substituting (45d) into the last equation gives either

(n+1) r, T k., 1 < p (46b)

or

k n+l

(n+1) n+l € > P (46¢c)

To

Equations (46a) and (46b) give no information.concerning
n+1. But (46a)
and (46c) demand that '

? k n+1

Irn+1I h n+l

and therefore a sufficient condition that (45d) hold true
is (46c). Substituting (43) into (46c) gives

To T > X Ixol +y |Y0| + oz llzol

(47)

: n-1
+ [iz + ?2 v 7% ?2] (n+2) D, (i+1) LU
. i=0




We now want to

obtain some kind of limit on

n-1
(n+2) 52% (i+1). LS ko5
Writing
(n+2) = (i+2) (n-i+1) - (i+1) (n-i)
then
' ! 1 1
(n+2) k, . k__ . = +
i+l "n-i n+l i+l n-i
) 1 1 . 1
n+3 i+2 n-i+l
or
n-1 '
(n+2) & (1) kypy kg

o [ (2, ).
i=0 n+l i+l n-i

n-1 1 %i?
i=0 "1 i=0

i+l

n+3

i+l

1, _1
i+2  n-i+l

(i+2) (n-1+1)



Using partial fractions for the second member of the
right hand side '

i=0

n-1 4 n 1
(n+2) 3 (i*1) kg k . = (z T)

S U It I
i=0 n+3 |n-i+l i+2

Noting that

n-1 n+l n ‘

1 1
2 = '.‘=<.E l) -
1=0

n-i+1 i=2 i

and furthermore that

=
1
-
|H
1
o]
4
[
e
1
. ~
M=
=
~N——’
t

)
1}
o

-
4o
™o

[
f

oo

=




one obtains the result

(n+2) ¥ (i*1) ki, k

A
w o

n-i

L |
nizl ' ' nrl {‘;1 i
(n+2) (i+1) k.., k_ . = =
=0 1+l "n-i n+3
But, for any n > 2
n
Z ;l- < 1 + _1- + I_l_—__z. = = + _1_1_‘_2_
i=]1 i - 2 3 3
'so that
a 1
n + 2 > = < = (n+1)
i=1 1
and therefore
n
nt2 > L
i=1l 1 < 5 (1 - ) < 5
n+3 -3 n+3 -
or
n-1

(48)



.

Substituting this result into (47)

— 5 —
T (rO - g T) > X lxol oy h’ol t z |20|

=2

s 2 (%24 72+ T (49)

To obtain a sufficient condition for (32b), we start by

writing this equation as

< 3(n+1) |rn+1l a

(n+1) 1, Ial,n+1l

1,0
n-1
+ i};o (i+1) [3 |ri+1| Ial,n-il +
lag 5411 Irn—il]
Substituting (45) into this equation gives
= n+l
(n+1) 1, |a1,n+1| < 3 (n+l) T a; o € k

n+1l

a, T e %él (i+1) k... k
1 : i+l

n-i
i=0




‘ .

In the same way as before, a sufficient condition that
(45) hold true is

n-1
rpa; > 37T aj o * 43, T (n+2) .E: (i+1) k;,q k

n-1i

'Incorporating the previous results for a limit on the

sum of the last member of this equation gives

— 20 — — .
ay (r0 - g— r) > 3r al’0 (50)

For equation- (32c)

n
(n+1) (n+2) lxn+2| M Z lal’il IXn-i'

<ufen Il v dapal Igl]
n-1
2 ay gl x4l
i=1 ’
< u " k, [al,O X + a2 |x0|]
n-1
+ a3 X €' k. k__
i=1 nod




¢

and the sufficient condition is

2 — n+3 - —
€5 X > Y — [a X + a; |x I]
: n(n+1)2 1,0 1 0
(51)
n-1
* _1 X RS ki kn-l
n+l 1=1
We now obtain bounds on
n+3 (n+3) B4
7 2,k kg
n(n+1) n+l i=1
For fhe first of these
n+s . _m ., 3
n(n+1)2 n(n+1) 2 n(n+1)2
= — v =3 < 2 a5 (52)
(n+1) n(n+1) 18




To obtain a bound on the remaining term, we write

n-1 : n-1
(n+3) ;g& ki kn-i = (n+l1) ;ga ki kn—i

n-1
+ 2 12—-31 ky k4
, !
Consider the first member of the right hand side. Write

(n+l) = (i+l1) (n-i+1) - i (n-i)

and therefore

o1 1, 1
n+2  \n-i+l i+1




’

QI‘
n-1 n-1
(n+1) 3k k. = (L, 1
i=1 i=1 n \i n-i
_ 1 1 + 1
n+2 n-i+1 i+1
- 1 nil n+2 i n
n(n+2) i=1 i i+l
(53)
+° n-1 n+2 n
i=1 n-1i n-i+1
Writing

+
o
N
= =
] [
=t A
He [
\-/
t
S
=}
feds =
1 1
=t

-
+ |
—
S

1]
N
- =
I 1
e
He [+
SN—
+
A
oo}
oD
I 1
g

el
—
U e
+
fd
—
SN




.
»

and recalling that

}Ii 1 _ n

i=1  i(i+1) n+l

We obtain

S S |
i=1 i(i+1) n

which yields -

n-1 n+2 n\ _
- —)= n -
i=1 i i+l

Consider now the last termof (53).

n-1 n+2 n
- - n
i=1 n-i n-i+l
n-1
+ 2 1
i=1 n-i




Noting that

=]
1
[
=]
[}
—
o}
1
[}
=]
1
-
rd

and 1 =

=

n
ot
e}

1
[
=]

1]
[
-

=
i
—
[
+
—
et
i
=
e}
[
[
+
-t

one obtains

n-1
) n+2 I = n-1 + 2
i=1

n-i n-i+l

d
—

.Ip_a

[
L
=

P

and therefore

n-1 1
n-1 : Z(n-l + Zgga —)
(n+1) 3] k; k5 0=

i=1 n-1 n (n+2)

However, for any n > 2

d
—

.[p_n
A
=
[}
—

o
11
=

=]




[

which gives

n-1 1'
2 (“‘1 EADY ") 2 (n-1 + 2 (n-1))

and therefore

(n+1)

and also

i=1 1
(n+2) - n (n+2)
2 (3n-3) 6 (n-1) 6 (n-1)
= U < ——— e _<- ————
n (n+2) ~  n (nt+2) n
= 61-Y < ¢
n
n-1
k. k < 6
i=1 not
. kn_l < 6 < 2 for n > 2
n+l




s

Finally, we now have that

n-1
(n+3) k. k_ . < 10 (53a)

or

w
Wl
—

< —_—

for n > 2

(93]

Symmetry gives, for (32d) and (32e¢)

— .2 5 10 — 5 —
y (¢ -2 pa - —=a) > = u 7, l|y,l
18 1,0 3 1 18 1170
(55)
—- .2 5 10 5 —
z (e - 2= n a - = a,) > = ua; |lz,| (56)
18 1,0 2 1 18 1 2%




Equations (49), (50), (54), (55) and (56) give the
sufficient conditions for convergence of the assumed
series solution. We must now show that these conditions

are all compatible.

To begin with, (54), (55) and (56) can always
be satisfied by choosing ¢ large enough and provided

ez>+§—ua + 10 3 (57)

— 3 ' -
T < 75 Yo (58)

and 51 is sufficiently large. This may require choosing
e somewhat larger for equation (57). Finally, (49) can be

satisfied provided

|
A
) N

To

or provided (58) is satisfied, and by choosing X, y,
and z small enough. The smallness of X, y and z in
(54), (55) and (56) can always be offset by choosing a
larger . Thus, the sufficient conditions are all

compatible.

Knowing now the sufficient conditions such that
all coefficients of the assumed series are bounded, we
may simply follow the method of section 2.3 to show that

the series are convergent.




‘

mi —— o~
111C piv

derivative series will not be demonstrated. The results

Fh

£ +1 1
f the convergence for the partial

wW

O

(o]

of numerical computations suggest convergence, since the

coefficients for the partial series converge just as fast

(numerically) as the integration series.




4.4 Numerical Applications

In order to test the accuracy of the integration
scheme, the following initial conditions were chosen.

X = =-3915.2321 km.
y = +4802.5435 km.
z = -3723.0849 km.
X = -240.95718 km./min.
y = -331.63944 km./min.
z = -169.31280 km./min.

Using the value
§ = 1434978970.0 km>/min’

the corresponding two body period is

T = 100.5721745036 min.




' ' . l .
. I3

Twenty terms were arbitrarily taken for the assumed

series solution, and the desired accuracy was 1)(10°5

km. The integration step size was computed as given

-in section 2.4, that is, if we define Cm to be the

largest in absolute value of Xjg5 Y195 and 279, then

19 _ -5
Cmax At = 1x10
or
1
-5 1
At = [%519~—] minutes
. “max ~

which gave values ranging between 23 and 26 minutes for
the example considered here. The values of the coordinates
after integrating up to the period T were

xp = -3915.2321
yp = 4802.5433
zp = -3723.0849
ko = -240.95718
yo = -331.63946
by = -169.31280




. .
-

Using a fixed At of 20 minutes for 5 steps and
then one step with At = ,5721745036 yielded no diffe-

rences to 8 significant digits in the initial and periodic
coordinates. '

Several tests are available to check the accuracy

of the partial derivatives. For the first test, define
a matrix ¢ to be

X X X X X X |

axo ayo ‘ azo Bxl Byl ‘le

dy

on

3z

on

9X

on

dy

on

A

e o w om m m e m T mm A am o e e = om = e = = = =

axo




Now subdivide g so that

where each of the ¢ij is a 3x3 matrix. It can be shown
that if the force field can be derived from a potential
which is continuous, then

T T
B2 12
-1
¢ =
T T
’éz; 11
Then from
661 o1
one obtains
T T
811 $22 - By % = 1
T T
B12 11 - P11 %1, = O

(59a)

(59b)



=——
s

¢zi ¢zzT Y ¢21T = 0 . (59¢)

b2 %11 - Pty < I o (594)

Substitution of the computed values of the various partials
into (59a) gives the following result.

+.999 999 87 + .000 000 02

+ .000 000 09

A T T _ | . _ - :
891 %y - By, 57 = | -.000 000 01 + .999 999 97 - 000 000 02
‘ +.000 000 01 - .000 000 03 + .999 999 91

_ A second test for the partials is to utilize the
definition of a partial derivative. For example.

9X _ X (XO’YO’ZO,XI:Y]_"'AY ’Zl) - X (XO,Y():ZO’X]_:Y]_’ZI)

3y, Ay

The increment Ay was determined by taking various percentages

of Yq- A sample result is shown in Table I for At = 10 minutes.




I G G N N N BN N N D AE BN IS N O R B e e
’

Table I
% Yo ax Series value for
E;I ax/a&
9% -.18102203
5 -.18318041
1 -.18517090
.5 -.18540662
.1 -.18559297
.05 -.18561613
.01 -.18563463
.005 -.18563694 "- 18563925
.001 -.18563879
.0005 -.18563902
.0001 -.18563920
.00005 -.18563922
.00001 -.18563925
.000005 -.18563925




A

5.0 APPLICATION TO THE ARTIFICAL-SATELLITE PROBLEM

WITH PERTURBATIONS DUE TO JZ’ J3, J4

The equations defining the motion of a close earth

satellite perturbed by the zonal harmonies JZ’ JS’ and J4

are
x = 34 (60a)
9X
y = 4 ~ (60D)
ay
5 = U (60c)
oz
wheré
2
JouR 1 3,2
v == 3 ° %
2 T T
3
J.uR 3
3 S5z 3z
- (—‘*7" ] _5‘) (61)
2 T T

[
[N}
.
S
o
=
A
L ]
v
'
[
= o
NN
N
+
(TN R
(92
= N
W
S—




From (62),

s

i)

)

i}

earth's equatorial radius

second zonal harmonic
third zonal harmonic

fourth zonal harmonic
GM = (mass earth) x

XZ + y2 + 22

[»

[er

and if we define

(gravitational

constant)

(62)

-(633)




-

then,

oU

X

- .1 uJ R®
2
8

= - u_{ + K
r3 2

* X
oKy =

T

X
K =

T

oy
= ~§ + KZ
T

Y_

* K 5

T
: y_

K 5

r .

 (63b)

(63c)‘




Introduce the new variables,

1 '
A, = 1 64b
1
A3 = ;—-7‘ (64C)
A, = z (64d)
r
: 2
z 2
- yA A 2
Ag = - = A (641)




v

A, = x A, (64g)
Ag = x Al | (64h)
Ay = y A, (641)
Ao = Y A3 - (643)
A11 = z A2 | _ A (64K)

A, =z Ag | (641)
A13 =z A5 A (64m)

The equations to be solved are then,

T = XX + y& + 27 (65a)
3 Ay r 4+ T Al = 0 (65b)
5 A, r + T Az = 0 ‘ (65¢)



L

e e

‘e
e

N e

Te

oo

(654d)

(65¢)

(65f)

(65g)

(65h)

(651)

(653)

(65k)

(651)

(65m)

(65n)



i

-u A

- ¥ X A1

+

5K

+

Ky

'UAly

+ 5K

+ K4 A

1 Z

+ K

3 A8 (3z - 7 A

A8 (1 - 14 A

+ K

3

10

+ K

2

2

AlO (3z - 7 A

2

K A2 (-3 + 30 A

A7 (-1 + 5 AS)

13)

+ 21 A

5 6)

A9 (-1+5 AS)

13)

- 14 Ag + 21 AQ)

5

A11 (-3 +5 AS)

+ Kg g - 35 A()
70
+ K, Ay, (5 - . Ag + 21 A()

' (650)

(65p)

(65q)



5.1 The Integration Formulae

Assume the following solutions:

m .

x = -Zo x; Att . (66a)
1:
L i

y = | . y; AtT- (66b)
1:
m i .

z = . zs At -(66¢)
1= .
m i .

T o= .20 r; At (66d)
1:

A. = a. . At : (66e)

J i=o J.? | .

Then

. n i

X = (i+1) X541 At (67a)
i=0

L] m i

y = (i+1) Yie1 At (67b)

=
]
o




() m 3
z = (i+1) z.,; oth (67c)
1=0
. m i
ro= 3 (i+l) 1., At (67d)
i=0
. ) m i
A, = i+1) a. ..., At 67
; 1{30 (i+1) 2,141 (67e)
L1 m 3
X = (i+1) (i+2) x;,, Ath (67£)
1=0 ' :
. m i
'y = . (i+1) (i+2) y;,, Ot (67g)
1=
2 i
Z = 2 (i+1) (i+2) Z:,, BT (67h)

Substituting equations (31), (66), and (67) into equations
(65), we obtain the following recurrence formulae:

(n+1) 1o v = (1) (X0 X * Ypu1 Yo * Zhep Zg)
n-1
oA D gy Xyt Yieq Y (682)
* i+l Zn-i - Ti+1 T n—i)




(n+1)

(n+1)

(n+1)

(n+1)

To 21,n+1

n-1
Sy

i=0

0 22,n+1

n-1

>

i=0

To a3,n+1

n-1

>

o 24 n+1

n-1-

- X

(i+1)

(i+1)

(i+1)

(i+1)

3 (n+l1) a

(33 541 Tn-i ¥ 3 Tyaq 25 5oy)

5 (n*1) a; o 1h4y

(68c)
(325541 Tpog * 5 Tyyg 3 poy)
7 (n+1) a3’0 L

(68d)

(83 541 Tn-1 * 7 Tieq 23 9-4)

(0+1) (340 Thep = Zped)
(68¢)

(8 541 Ta-i * Ti+1 24,n-1




(n+1)

(n+1)

(n+1)

(n+1)

(n+1)

(n+1)

45 n+l

a6,n+1

a7,n+1

a8,n+l

49 n+1

410,n+1

n
2 2 (i+1) a4,i+l a4,n—i (68f)
n

2 ;g% (i+1) 85 541 4 n-i (68g)

n

2o A1) (3 541 X5 * Xy4q 3 n04)
(68h)

n

Il
555 (1+1) (@3 541 Yn-i * Yie

n

2

i=0

(i+1) (a

3,i+1 Yn-1i

* Yie1 23,n-1)

(68k)



)¢}
(n*1) a3y neq = ;g% (1+1) (37 341 Zp-3 * 2341 22,n-4)
(681)
N :
(n*1) a3, pep = jZ% (i+1) (83 341 Zn-1 * Zi+1 23,n-1)
(68m)
‘ n
(n+1) alS,l’l"'l = ; (i+1) (aS,n-i Zi"’l + Zn—i aS,i"'l)
‘ (68n)
(n+1) (n+2) X 4p = - K2 a7,n + K4 aS,n

n
2 [_ MA,i %nei to 3K a5 85 00y

(680)




(n+1) (n+2) y ., = - X

<0 s 5,n-1
(68p)
* %0,1’7 Kg G 2ag 3 + 3ag 5)
* 5Ky (3z 4 7 213 n-i )‘]
(n+1) (n+2) Z4p = -3 (K2 all,n + K3 a2,n)
: n
+ 5K + - . Z .
4 alZ,n =0 H al,l n-i
(68q)
14
toSag s 1 Kyarg 5 N4 12,04




.

5.2 The Partial Derivative Formulae

Following the notation of section 4.2, one obtains,

0th ORDER PARTIALS

ax*
— = 1 x* = XY g2 (69a)
ax* :
ox* '
_axxx = 0 L xR = Xg.Y¥gazg  (69b)
) x** = xl ’Yl’zl
x* % =
arO ;— X = XpsYgaZg
ax* 0 ' (69¢)
0 x* = X1,Y152
- 3a or
.aal,o 1,0 0 x* = XY 012
= ox*
ax* To
(694d)
0 X® = X1,Y9,2




In the following, x*

and Zl‘

9, o

ax*

daz
ax*

ga

ax*

da

ax*

3a6’0

ax*

8a7,0
ax*

To

2 a

2 a

takes on the values XgsYq»

5a2,0

9z

ox*

4,0

5,0

ax¥

335,0

ax*®

or

ox*

202%1271>

(69e)

(69f)

(69g)

(69h)

(691i)

(693)




¢

aas’o . 3a3’0
ax* 0 ax*

Bag 0 _ ; aaz’o
ox* 0 ox*
%310,0 _ y 92z g
dx* R
2110 ., 22,0
ox* 0 ax*
da da
~12,0  _ z, 3,0
ax* ox*
213,0 ., 2%5,0
ax* 0 ox*

1st ORDER PARTIALS

ax*

ax*

. axo
3,0 5 x*
oy
2.0 -
3 ax*
ay
a 0
3,0 5 x*
. 820
. azo
5,0 ax*
. azo

* =
X Xl’ )’1, Zl

(69k)

(691)

(69m)

(69n)

(690)

(69p)

(70a)



ax* x* = x,, vy z
_ 12 71 ~1
e 0 s (70b)
ax*# X*F= X4, Ygs Zg
T X X oy
1 - 1 X, 0 + X, 1 + ¥1 0
ax* T ax* ox* ox*
ay 0z 9z
+ Yo 1 + z) 0 + ZO 1
E *
oX 9X 9X (70¢)
aro
-rl__
ax*
9a A sa T
L1 o oL gy Lo, T,
ax* T, ox* ’ ax*
(704)
T
+ a _0
1,1 -




2,1 _ 1
*
oX rO
a1
P8as1 1
*
X ro
Toaz3
341 _ 1
ax* T,
) azl
ax*

1
a —_
Z,0 ox* )
(70e)
arl )
?:0 BX*
(701)
Brl
ax*®
(70g)




’

Ja

ax*

da

ax*

(70h)

(701)

(70j)

(70k)



939 1 _ 9
= f21 T
ox* ’ ax*
3y
+ a 1
2,0 Ay
10,1 _ ol
3y
1
+ a ——
3,0 3x %
93847 1 . 9z
ox* 2,1 ox*
9z
+ a 1
2,0 ax %

333,1
ax*

333 0

ox*

ax*

(701)

(70m)

(70n)



9317 1

ax*

922 4

ax*®

az.1

3z

ax*

9z

ax*® .

da

ax*

da

ax*

aas’o

ox¥

da

ax*

(700)

(70p)




¢

nth ORDER PARTIALS

ar

(+1) 1y —FE = (1)
ax*
dy
0
+
Yn+1 3y %
9z
+ 2 n+l
ax¥® .
' n-1
B + D (i+1) X.
. i=0
+ y » Byn—i +
1L s
+ Z azi+1 -
n-1 ax*

axo 9xX

n+1
X + X
n+l s 0 gxx
3Yn+1 BZO
0 ToZnel TS
ax* ax®
BrO
n+1 3 x*
(71a)
" i, P
1 ax* D=1 gxx
; Viep o, 92n.4
n-i 5 x* i+1] o x %
or . or.
ri+1 n-i _ rnFi 1+1
ax*® ax*




: da ar
(n+l) ro ___]_'_’E_]_' = - (n-{-l) al +1 _____0
ax* » 11 ax*
da ' ar )
+ 3 T ~ 1,0 a; g n+1)
ax* > ox*
n-1 day (71b)
- ) (i+1) {3 G — o7l
i=0 1 Ix*
. a 3ri+1 )
1,n-i 3 x
oTr._ . ' ?a, .
foalgel T T,y e
’ ax# n=1 ax*




2,n+1 0
(n+1) r —2— = = - (n+l1) a _—
ar " da
+ 5 (a, ntlo, s ‘1 2,0
Y gx* n ax*
n-1 | ar_ .
) 2: (i+1) 8y i1 n-i (71c)
i=0 > 1 ax*
da ., . da .
R 2,i+1 5 ( T 2,n-1i
ox* 1 ax*
oT.
i+l
* a2,n i )




sa or
(n-l-l) ro ._.__3_211_1 = —(n+1) 3_3 +1 __g
BX* ’n BX*
or | da
+ 7 ( a3 0 ntl + T +1 __élg)
’ ox* n ax*®
n-1 ' dr_ s
T & (i+1) §az 549 P |
(714)
da, . da .
+ r ) 3,1+1 + 7 ( r'+1 S,n—l
oL s 1 ax*
+ a2 ari+1 )
3,n-1 3y %




Jda or dz
(n+l) ro 4,n+1 = - (n+1) a4 +1 0 _ __21‘_1_
ax* PBTL gxx x*
aTr 9a
+
4,0 3 el 5 - (71e)
? X ) X
n-1 dTr_ . 2a, -
- Z (i+1) 8y i41 n-1i 4 - - _4,i+1
i=0 ’ ax* n=1 5y
d9a or.
* ri+1 t.n:d * a4 n-i Ll
ox* ’ ax*
da n da .
(n+1) S5,n+1  _ 2 Z (i+1) 8, :i1 4,n-1
ax* i=0 > 1 ax*
(718)
da, .
+ a2 4,i+1
4,]’1"1 BX*




| -

Jda
(n+1)
ax*

Jda

(n+1) _7,n+1

6,n+1

n+l

o

]
n
o

n
2 35 (i+1)
i=0

935 141

ax*

(i+1)

2,i+1

35 i+1

aaS,n'—i

-1

(71g)

(71h)




: / <=
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9a n X
8,n+1 -
(n+1) o= = Y (D) Jag g, —22
ax* i=0 s 1 3x *
8a3’1+1 aaS,n-l
MRS | BT S B (711i)
ax* ax* 1
. 2 9X541
3,11-1 ax*
aag n+1 1L . ayn-i
(n+l) —————= = Z (i+1) a, (v T
ax* i=0 1 ax*®
da., . da ]
2,1+1 2,n-1 .
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